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PARTITION RELATIONS FOR 
UNCOUNTABLE ORDINALS 

BY 

JAM E S  E. B A U M G A R T N E R  + 

ABSTRACT 

Partition relations of the  form a --~ (a, m)  2, where a is an ordinal and m is a 
posit ive integer, are considered.  Let  K be a cardinal. The following are proved: 
If K is singular and 2 " =  K § then (K§247 2. If K is a s t rong limit 
cardinal,  then  K2--,(K2, m)  2 iff ((Cfg)2--~((cfK)2, m)  2. If K iS regular and 

K2"--~ (K 2, 3) 2, then  the K-Souslin hypothes is  holds. If K ~ <  a < K + and c f a  = 
cfK > to, then  ~-~, (a ,3)  2. 

1. Preliminaries 

Our set-theoretic usage is fairly standard. Each ordinal is identified with the 

set of its predecessors.  Since the axiom of choice is assumed throughout,  

cardinals are identified with initial ordinals. We use oJ~ to denote the initial 

ordinal occupying position a in the sequence of all initial ordinals; of course 

too = to. If r is a cardinal then r + is the next  largest cardinal. The abbreviations 

ZFC, GCH and V = L stand for Zermelo-Frankel  set theory with the axiom of 

choice, the generalized continuum hypothesis,  and G6del 's  axiom of construc- 

tibility, respectively. 

All exponentiat ion in this paper is to be interpreted as ordinal exponentia- 

tion. 

If X is a set then IX[ is the cardinality of X and IX]" is the set of all 

n-e lement  subsets of X. If f is a function whose domain includes X, then f l X 

denotes the restriction of f to X. 

If a is an ordinal then cfo~ denotes the least ordinal/3 which can be mapped 

onto a cofinal subset of a. The ordinal a is said to be indecomposable iff a 

cannot  be represented as a sum /3 + Y where /3, Y < a. It is well-known (see 
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[14]) tha t  if a is i n d e c o m p o s a b l e  and  a = B U C, then  e i ther  B or C has  o rde r  

type  a. The  i n d e c o m p o s a b l e  ordinals  are  p rec i se ly  the ordinals  of  the f o r m  to ~ 

fo r  s o m e  ordinal  18. 

Le t  K be a regular  uncoun tab l e  cardinal .  A set  C C_ ~ is said to be closed 

unbounded  (in K) p rov ided  that  C is cofinal in r and fo r  eve ry  a < K, 

s u p ( C  A a ) U  C. It  is well  known  that  if Ca is c losed  u n b o u n d e d  fo r  e v e r y  

a < K, then so is {18 < K: fo r  all a </3 ,  18 E Ca}. 

A part ial  o rder ing  (T, =< r)  is a tree prov ided  that  fo r  all s E T, {t E T: t < rS} 

is wel l -ordered  by  =<r. The  level of  s, wri t ten l ( s ) ,  is the o rder  type  of  

{t E T:  t < rs}. Le t  K be a regular  cardinal .  A tree (T, _-< r )  is a K-Souslin tree if 

it satisfies the fo l lowing condi t ions:  

(1) I T I  = K ,  

(2) if S E T and l ( s ) = a  then there  are  t , , & E  T such that  t ~ t 2 ,  / ( tO = 

i ( t 2 ) = a + ]  and s < r t , &  

(3) if s E T t h e n l { t E T : s < r t } ]  = K 

(4) if A _C T is a set  of  pa i rwise  i n c o m p a r a b l e  e lements ,  then I A I < r. 

A set  B _C T is cal led a branch if B is total ly  o rde r ed  by  < r. Us ing  condi t ions  

(2) and (4), it is e a sy  to see that  a K-Sousl in tree can have  no b ranches  of  p o w e r  

K. The  K-Souslin hypothesis  is the asse r t ion  that  there  are no K-Sousl in  trees.  

Suppose  a,/30, 18," �9 �9 18,,-, are ordinals  and n < to. The  par t i t ion symbo l  

o~ ~ (18o,  18 , ,"  �9 � 9  

m e a n s  that  for  any  .f: [ a ] "  ---> {0, 1,. � 9  m - 1} there  exis t  i < m and X _C a such 

that  X has o rder  type  18~ and f ( x ) =  i for  all x E IX]".  Al te rna te ly ,  

a ~ ( 1 8 o , ' " , 1 8 , , - t ) "  holds iff w h e n e v e r  [a]" = PoU . "  U Pro-, then there  are 

i < m  and X C a  such that  X has  type  18i and [ X ] " C P ~ .  The  nega t ion  of  

a ~ (/3o,. �9 �9 18,_1)" is wr i t ten  a 74 (18o," " �9 18.,-1) n. 

Le t  a and 18 be ordinals .  We  say that  a can be pinned to 18, wri t ten a --* 18, iff 

there  is .f: c~-~/3 such that  for  any  set  X _C a,  if X has  o rde r  type  a then 

{.f(~:): s ~ E X} has o rder  type  18. 

The re  is an impor t an t  re la t ion  b e t w e e n  pinning and par t i t ion re la t ions ,  g iven  

by  the fol lowing:  

PaOPOSITION 1.1 Suppose  a and t8 are ordinals and  m < to. I f  a ~ 18 and 

18 76 (/3, m )', then ~ 76 ( a, m )2. 
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PROOF. Let  f :  a ~ / 3  be a pinning map. Suppose [/3]' = Po t3 P, and Po, P, 

are a counterexample to/3 --*(/3, m) 2. Let  Q, = {{~, .1}: ~, ,1 < a, [(~)  ~ [ ( n )  and 

{/(~),f(*1)}u P,}. Let  Qo = [ a ] ' - Q , .  Then Qo, Q, are a counterexample to 

a - , ( a ,  m )  2 . 

REMARK. Obviously a more general theorem than Proposition 1.1 is true. 

However ,  in the rest of this paper we never  need more than Proposition I.i .  

2. Statement o[ results 

We shall be concerned with the classification of ordinals a which satisfy 

a ~ (a, 3)'. We treat particularly the case a = K', where K is a cardinal. 

It is easy to see that if ~ ~ (a, 3) 2 then a must be indecomposable.  If a is an 

infinite cardinal then it is well known that a ~ ( a ,  co) 2. See [5]. Specker ([15]) 

proved t o 2  (toz, m)2 for all m < to, and to" ~ (to", 3)' for  3 =< n < to. Chang ([l]) 

proved to w ~ (to w, 3) 2 and Milner improved his result to to" --* (to',  m)" for  all 

m < to. A much shorter proof of the latter result was found subsequently by 

Larson ([12]). Galvin and Larson (see [6]) have shown that if to" _<- a < to, and 

a - -~(a ,  3)', then a = to '~  for some /3. It is still unsettled whether  
t o ~ 2  (to~2, 3)2. 

For  uncountable ordinals, less is known. Hajnal proved: 

(1) if 2" =K  + then K+- K-/,(K+" K, 3) 2 

(2) if 2" = r ~ and K is regular, then (K+)2~((K+)2,3) '. 

The proof of (1) is in [2]; (2) is proved in [8]. In Section 3 we show how to 

extend Hajnal 's  method to prove (2) in case K is singular. We obtain 

THEOREM 1. If 2" = K + then (K+)276((K+)2,3) 2. 

Section 4 is devoted to a proof of the following: 

THEOREM 2. A s s u m e  that  r is a s trong limit cardinal  and  m < to. Then 

,c 2 ~ (,c 2, m )2 iff (CfK)2--~ ((CfK)2, m )2. 

If GCH is assumed, then Theorems 1 and 2 reduce the problem of 

determining when K 2 ~ ( r ' , 3 )  2 to the case for  inaccessible cardinals. 

Further information is given by the following, which is proved in section 5. 

THEOREM 3. A s s u m e  K is regular and K'---*(K',3) 2. Then the K-Souslin 

hypothes i s  holds. 
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A cardinal K is called w e a k l y  c o m p a c t  if r ~ (r ,  r )  z. It is known that if r is 

weakly compact  then u2--~(r z, m) 2 for all m < to. See [7], for  example. 

In view of Jensen's  result ([9]) that if V = L then r is weakly compact  iff the 

r -Sousl in  hypothesis holds, we have 

COROLLARY 4. If V = L a n d  r is a c a r d i n a l ,  t h e n  rz--~(r2 ,3)  2 i f f  cfK is 

w e a k l y  c o m p a c t .  

Other results in the same direction are the following: If r is weakly compact ,  

a < r  and a ~ ( a , m ) Z  then K . a - - > ( r . a , m ) Z  (due to the author) and 

K2.a  ~ ( K 2 . a , m )  2 (due to Larson). See [11]. Also, if r is a Ramsey cardinal 

then K ~ --* ( r  ~, m )2 and r ' ~  to __, ( r ' ~  to, m )z for  all m < to. This is proved by 

Larson in [10]. 

Little else is known, even assuming GCH. For example,  it is not known 

whether  GCH (or even V = L )  settles toz �9 to ~ (to2" to, 3) 2. This is Problem 13 in 

[3]. 

If GCH is not assumed, then the only substitute we have at present for  (1) 

and Theorem I is a result of Larson ([10]), which states that if r is uncountable 

and regular then r ' + '  76 ( r ' + ' ,  3) 2. 

In Section 6 we prove 

THEOREM 5. A s s u m e  K is a c a r d i n a l  s u c h  t h a t  cfK > co. L e t  a be  a n  

i n d e c o m p o s a b l e  o r d i n a l  s u c h  t h a t  r ~ < a < r ~ a n d  c f a  = A. T h e n  oe --~ r "~ �9 a. 

I [  c f r  = ~, t h e n  a - ~  I~ ~ - A a l so .  

By Proposition 1.1, Theorem 5 together with Larson 's  result (and the 

observation that a 76 (a, 3): if a is decomposable)  yields 

THEOREM 6. A s s u m e  r is a c a r d i n a l  a n d  r "  < ot < r 4 .  I f  c fa  = c f r > t o ,  

t h e n  a 76 (a, 3) 2. 

This leaves open many interesting questions. For instance, are the following 

propositions consistent with ZFC: 

(a)  to , .  co ~ (co l .  co, 3) 2 

(b) to ~---~ (to~, 3) z 

(c) oJ7 -~ (oJT, 3) 5 ? 

In view of Theorems 1 and 3, it seems possible that Martin's Axiom ([13]) may 

provide an approach to (b). 

Sections 3-6 may be read independently of one another.  
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3. Proof of Theorem I 

In view of  Hajna l ' s  result,  we may assume K is singular. 

Let  A = {(ri, ~): 77 < r < K+}. Le t  < ,  be the lexicographical  order ing of A 

and let < 2 be the backwards  lexicographical  order ing of  A (i.e. the order ing by  

second e lement  first). Then  the order  type  of  (A, < ,) is (K ~)2 and the type  of  

( A , < 2 )  is K+. 

If X G A  and a < K  +, then a is a double limit point of  X iff {71< 

~: {~ < a: (7, ~) ~ X} is colinal in a} is cofinal in a. Le t  D = {X C_ A:  IX]  = K 

and {cfa : c~ is a double limit point of X} is coiinal in K }. Since I D I = 2" and 

2" = x +, we may  assume D = {Do : cr < K +}. 

Now,  by induct ion on <z ,  for  each  (r/,sr E A we define a set A(~I,~)C_A 
with the fol lowing proper t ies :  

(1) if (~/',sr E A(r/,s~), then "O < r / ' < C < ~ :  

(2) if x , y  C A  (r/, so), then x ~ A ( y )  and y Z A ( x )  

(3) A( r / , s  r is a funct ion  

(4) if ct < g and D~ C_ {(7/', C):  7 / <  r/' < ~:' < s~}, then /9, N A (r/, ~r r 0. 

Le t  x = ( r / , s  r and suppose  A ( y )  has been defined for  all y < z x .  L e t  

E = {D,:  cr < s ~ and D~ C_ {(r/', C):  r / <  77' < ~:' < s~}}, and suppose  I E ] = A. Le t  

(Eo : /3 < A ) be an enumera t ion  of  E. We will put  A (x) = {x0 :/3 < a}, where  the 

x~ E E0 are defined by induct ion as fol lows.  Le t  x~ = (1"/, ~r for  all y </3.  Le t  a 

be a double  limit point  of  Eo such that  c f a  > 1 / 3 1 .  This is possible since 

I/3 I < A =< K. Since c f a  >1/3 I, there  exists  r/~ < ot sat isfying 

(5) 

(6) 

Also, 

(7) 

(8) 

{s r < a : (rio, ~r E Eo} is cofinal in o~ 

for  all y </3,  e i ther  a < ri, or ~:, < rio or "0r < rio < a < ~:,. 

s ince c f a  > I/3 I, there  exists  ~:o < o~ such that  

fo r  all y </3,  if "0r < no < a </5,  then ( r /o ,~ )  ~ A(riv, sr 

Of course ,  in o rder  to make  (8) true,  we must  use the induct ive  hypothes i s  (3) 

for  each ( '0 ,  se~), " /< /3 .  Finally,  let xo = (rio, ~:0). It is easy  to check  that (1)-(4) 
hold for  A (xo). 

Le t  Po = {{x, y } E  [A]2: x ~ A(y)}.  It is c lear  f rom (1) and (2) that  if B is a 

th ree -e lement  subset  of  A then [ B ] ' ~  Po. N o w  suppose  X _C A has order  type  

(K .)2 with respec t  to < ,. We will show that  [X] 2 f3 Po ~ 0. 
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LEMMA 3.1. l.f X C A has order type ( r ~)2, then the set o.f double limit points 

oJr X contains a set which is closed and unbounded in r+. 

PROOF. Let X'  ={rl:  {~j: (rl,~:)E X} is colinal in K+}. Then X'  is cofinai in 

K +, so Y', the set of limit points of X' ,  is closed and unbounded in r § 

Similarly, if for each 7/E X'  we let X, = {~: (rl,~:)E X}, then Y,, the set of 

limit points of X~, is closed and unbounded in r +. Then Z = Y' A {a : for all 

1"/< a, a ~ Y,} is closed and unbounded. Moreover every element of Z is a 

double limit point of X, so the lemma is proved. 

Now choose 19 such that I{~:: (r/,~J)E X}I = u+. By the lemma there is a 

closed unbounded set C consisting of double limit points of {(77', ~r,): rl < rl' 

and (~', ~') ~ X}. Hence there exists some/3 < K § such that { c f a : a  ~ C ~/3} 

is cofinal in K. Let Y = { ( r I ' , ~ j ' ) ~ X :  r / < ' 0 '  and ~r,</3}. Then Y ~ D .  Say 

Y = D~. Let ~: > a be such that (rl, ~:) ~ X. Then by (4) we have A(r~,~r) ~ Do 

0. It follows immediately that [X]~N Po : 0, and the proof is complete. 

4. Proof of Theorem 2 

The theorem is a tautology if r is regular, so we assume K is singular. We 

give the proof for m = 3; the rest is left to the reader. 

Let A = c f r ,  and let (Ks: o~ < A) be an increasing sequence of regular 

cardinals such that Y.~<~ Ks = K. 

Let A = {(a,/3): a,/3 < K} and let B = {(a,/3): a,/3 < A}. Under the lexico- 

graphical ordering, A has order type K 2 and B has type A 2. 

First we prove that K2--->(r2,3)z implies A2---~(A~,3) z. Let {So: ~t < A} be a 

collection of disjoint sets such that 

(1) TSol = ~ o  

(2) u { & : ~ < x } = K  

(3) if a </3, ~:E S~ and T/~ SB, then ~ < n. 

Now suppose Jr:[B]2-->2 is a counterexample to A 2--~ (A 2, 3) ~. Define 

g: [A]2--->2 as follows: If ~ E So, ~/E S~, ~:'E S,., ~ / '~  S~. and (a,/3) ~ (a ' , /3 ' ) ,  

then let g({(~,~),(~',~')})=.f({(a,/3),(a',/3')}); otherwise let g({(~,~/), 

(~',T/')}) = 1. It is easy to see that g is a counterexample to K2--~(K2,3)2. 

Now we prove that A '--~ (A 2, 3) 2 implies r2---*(r2,3) 2. Let  Jr: [A]2--~2, and 

assume that there is no three-element set X C_ A such that Jr(x)= 1 for all 

x E [X] 2. Let g: [r]4--~ 8 be such that if a </3 < ~, < 3 < r and a '  < /3 '  < ~/ '< 
~' < r ,  then 
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iff 
g({ot,/3, y, (5}) = g({a ',/3', y ' ,  8'}) 

f({(a,/3), (T, 8)}) = f({(a ' , /3 ') ,  (y ' ,  8')}), 

/({(a, y), (/3, 8)}) = / ( { ( a ' ,  y ') ,  (/3', 8')}) and 

f({(a, 8), (/3, T)}) = f({(ot', 8'), (/3', y')}). 

LEMMA 4.1. There is a collection {S~: a <A} which satisfies (1) and (3), 

and in addition for any aj < a2 < a3 < a,  < A, i[ xi, x] C_ S,, and Ix, I = I x',l [or 

i =  1,2,3,4, and i [ I U { x , :  1_-<i_-__4}1 =4 ,  then 

g(xj U x2 U x3 U x,) = g(x'~ U x'2 U x'3 U x'4). 

PROOF. This is an immediate consequence of the Canonization Lemma of 

Erd6s, Hajnai and Rado (Lemma 3 on p. 110 of [4]). The proof in [4] uses the 

GCH, but for strong limit cardinals that assumption is unnecessary.  

Let Z,, a < A, be such that 

(4) for all s r E Z., a . <  ~ < A 

(5) if a # / 3  then Z ~ M Z o = 0 .  

(6) I Z,,  I = 

Let W = { ( a , / 3 ) ,  a E Zo and /3 E Z~}. Then W, with the lexicographical 

ordering, has type A 2. Furthermore W has the convenient  property that if (a,/3) 

and (a ' , /3 ' )  are distinct members of W, then either a = a '  and a,/3 and/3 '  are 

distinct or else a, or', /3, /3' are all distinct. 

Now define h : [ W]2---~ 2 as follows. Let (a,/3) < (a ' , /3 ' )  lexicographically. 

Then h({(a,/3),(a ' , /3 ')}) =/ ({(s  r r/),(sr •')}), where s r < so', ~ E S~, sc'E Sa,, 

rt E So and )7' E S~,. By Lemma 4.1, the definition of h is independent of the 

choice of s r C,  rt and rt'. 

Suppose X is a three-element subset of W and h(x)  = 1 for all x ~ [W] 2. Say 

X = {(a./3~): i < 3} and (ao, 13o) < (a~, 130 < (a:,/32). Then choose ~, r/t, i < 3, so 

that Go<~ ,<~2  and ~:~ES~,, r/~ES~,, i < 3 .  Then [ ( x ) = l  for all 

x E [{(~. r/i): i < 3}] 2, contradicting our assumption concerning f. Since 

)t 2__. (~ 2, 3)2, we conclude that there exists a set X C_ W of order type )t" such 

that h(x)  = 0 for all x E [X] 2. 

Let Y = {a : I {/3 : (a,/3) E X} ] = A }. For a E Y, let X~ = {/3 : (a,/3) E X}. Fix 

a E Y and define ko: [X~]2---~ 2 by ko({/3, y}) = 

(/({(~,, r/,), (~2, ))0}), /({(C,, 7)D, (~ ,  r/D})), where /3 < y, ~,, ~2, ~ ,  sr E S~, 

. , . n ; E S o .  n2. n ' . E S .  #,<~2 and ~', < ~ .  
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LEMMA 4.2. There is X" C_ X~ such that ] X"  I = A and k, (x)  = (0, 0) for all 

x ~ IX ' ]  2. 

PROOF. Since A ---> (A, to, to, 0)) 2 (see [5], theor .  44), we know that  if L e m m a  

4.2 is false then there  exist  m, n and X"C_X~ such that  X "  is infinite, 

k~ (x) = (m, n) fo r  all x E [X"] 2, and ei ther  m = 1 or n = 1. Suppose  m = 1 ; the 

p roof  for  n = 1 is similar. Let/30 </3j  </32 be the first three  member s  of  X".  Le t  

~ o < ~ , < ~ 2  be member s  of  S~ and let rl, ESo,, i < 3 .  Then  clear ly  

f({(r */i),(r rh)})= 1 w h e n e v e r  i < j  < 3, cont radic t ing  our  assumpt ion  con-  

cerning .f. H e n c e  L e m m a  4.2 is true. 

For  a E Y and r E S~, define U+ _C U {So :/3 E X '}  so that  

(7) U+ tq U+, = 0 if r ~:' E S~ and r ~ ~:' 

(8) Iu, l 

Let  T = t_Jo~y U +~s, {(r ~7 ~ U~}. Since K---~(K,3) 2, we may  assume that  

f ( x )  = 0 w h e n e v e r  ~: is fixed and x E [{(r n) :  +7 E U~}] 2. We asser t  that  [(x)  = 0 

for  all x E [T]  2. Since T has type  K 2, this will comple t e  the proof .  

Le t  x = {(r ~7), (s r r/')} E [T]  2. Le t  r E S~, r E S~,, 77 E So, n ' E  So,. We  may  

assume ~: < ~'. 

Case 1. a ~ a ' .  Then  a, a ' ,  /3, /3' are dis t inct  and [ ( x ) =  

h ({(a, /3 ), ( a  ', /3 ')}) = 0 since X is h o m o g e n e o u s  for  h. 

Case 2. a = a '  and /3~ /3 ' .  Then  we are done  by  L e m m a  4.2 and the 

definit ion of  X ' .  

Case 3. a = a '  and /3  = /3 ' .  Assume  .f(x) = 1. L e t  r < r < ~72 be member s  

of  S,  and let 71o< r/, < r/2 be member s  of  So. If +7 < ~7' then,  by  L e m m a  4.1 and 

the definit ion of  g , / ( y )  = 1 for  all y E [{(r no), (r ~/,), (~:~, r/~)}] ~, while if 7/' < n 

then .f(y) = 1 for  all y ~ [{(r n~),(r r/,),(r r/o)}] 2. In e i ther  case  our  assump-  

t ion concern ing  [ is cont rad ic ted .  H e n c e  [ ( x ) =  O. 

5. Proof of Theorem 3 

We will show that  if K is regular  and a K-Souslin tree exists,  then 

~2--+ (K2, 3)2. 

Suppose  (T, < r)  is a K-Souslin tree.  Since I T I = K, we may  assume T = K. 

Le t  X = {(a,/3): c~ < r/3}. Le t  X be o rde red  lexicographical ly  with respec t  to 

the usual  order ing on K, i.e., let (c~,/3) < (% 8) iff a < 3, or c~ = 3, and /3 < 8. 

Then  X has o rde r - type  K2. 
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Next we define sets Po, P~ so that [X] 2 = Po U P,. Let P, be the set of all pairs 

{(a,/3), (a ' , /3 ' )} E [X] ~ such that a < r a '  < T/3 and for all y, if a '  < ry  =< r/3 then 

y ~  ~/3'. Let  Po = [X] 2 -  P,. 

It is clear that there is no three-element set Z C X with [Z] 2 C P,. It remains 

to show that if Y C X  and Y has order- type K 2, then [ Y ] 2 A P , ~ 0 .  

Let  Ao= {a:/{/3:  (a, f l ) E  Y}l = x}. Then tAol = K. Let  To = 

{a: ::1/3 E Aoa <= r/3} and let Bo = {a: a Z  To but for all/3 < ra, [3 E To}. Then 

Bo is an antichain in (T, < r), so I Bo [ < K. Choose do E Ao so that l(c~o) > !(/3) 

E Bo. Then it must be true that for all/3 > rao there is 3' E Ao such that for all/3 

/3 --<~3'- 
Now 

{~: , ~  
Choose 

there is 

let A, ={/3: ( ao , /3 )~  Y}, let T, = { a :  ::1/3 E A , a  -<r/3} and let B, = 

T, but for all /3 < ra,/3 ~ T,}. Then B, is an antichain so I B, I < K. 

a~ E T, so that l(a~) > 1(/3) for every/3  ~ B,. As before,  for  all/3 > ra~ 

3' E A~ such that /3 =< fT. 

Now let a a E A o  be such that a~_-< ra, ,  and let/3, be such that (a,,/3~) E Y. 

Since a, has at least two immediate successors in T, there is an immediate 

successor a', of a,  which is incomparable with /3,. Let  /3oE A~ be such that 

a'~ =< r/3o. Then {(C~o,/3o),(c~,/3J} E P,, as desired. Hence K274(Kz, 3) 2. 

6. Proof of Theorem 5 

Throughout  this section, if K is a cardinal and n < w then let "K = 

{(a~, �9 �9 -, a , ) :  a ~ , . . . ,  a ,  < K}. When "K is ordered lexicographically it has order 

type K". Note that 'K = {(a): a < r}. 

LEMMA 6.1. Let K be an infinite cardinal and let 1 <-- n < w. Then no set of 
order type K" may be decomposed into fewer than cfK sets of  smaller type. 

PROOF. It will suffice to show that if A < cfK, X. C_ "x for each a < A and 

each X,  has type < K", then U {X~ : a < A } ~ "K. 

By induction on n we define the notion of a large subset of "K. We say X _C tK 

is large iff [K-{a:(a)~X}I<K. If X C " + ' K  then X is large iff 

J K - { a , :  { ( a 2 , " ' , a . + , ) :  ( a , , a 2 , . . . , a , §  E X} is a large subset of "K} I < K. It 

is easy to check the following by induction on n: 

(a) If /z < cfK then the intersection of /z large subsets of "K is large 

(b) If X C_"K and X has order type < K" then "K - X is large. 

Lemma 6.1 is an immediate consequence of (a) and (b). 
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LEMMA 6.2. Suppose  K is a singular cardinal  and  cfK = A > to. Then 

x ~ ~ A ~. In fact ,  there is a func t ion  f:  r ~ ~ A ~ such that  for  all n < to, i f  

X C_ r ~" is o f  order type r "  then {f(a) :  ol E X} has order type >= A* 

PROOF. It  will suffice to show that for  each n < to there is a function 

f. : r "  -*  A" such that for  all m _-< n and all X _C K *, if X has order  type r " then 

{f . (a) :  ~ E X} has order  type _-_ A ' .  The function f is then obtained by 

patching together copies of the funct ions f.  in the following manner:  r "  may be 

written as the disjoint union of sets C., n < to, such that each C. has order  type 

K". Let  f ' :  C, ~ h "  be a copy of f, and let f = tJ ,<~f ' .  If  C C_ K ~ has order 

type r "  then by L e m m a  6.1 there is some p so that C (q C, has order type K n, 

and since {f~(a): a E C fq Cp} has order type => K" we are done. 

Let  (K. : a < A) be an increasing sequence of cardinals such that sup {to : a < 

A } = K. Define h : r ~ h by h (a )  =/3  iff/3 is the least ordinal such that a < r~. 

Define g. :  n K ~ " A  by g , ( a l , . . . , a , ) = ( h ( a O , . . . , h ( a , ) ) .  We will prove  by 

induction on n that for  all m - <  n and all X_C"K, if X has type r "  then 

{g,(x): x E X} has type _-> h" ,  and this will p rove  the lemma.  

For  n = 1 this is clear. Assume n > 1. 

If m = 1 then again the assert ion is clear. Suppose  m > 1 and for  all smaller 

values of m the assert ion is true. Le t  X C_ "K have order  type x ". 

Case 1. X is bounded in "K. Then it is not difficult to see that there are 

sequences (~j~ : a < A) and (Ao : a < A) such that 

(1) Ao C_"-IK for all a 

(2) A~ has order  type _-> r " - l -  K~ 

(3) {(~,/32," �9 ",/3.): ( / 3 2 , " ' , / 3 . )  E A~} _C X for  all a. 

(Note: we do not  require the so. and A~ to be distinct.) Moreover ,  we may 

assume h(~: . )= h(~:o) for all a < /3  < A. It follows that the order  type of 

{g.(x): x E X} is at least as large as the order type of {g.-l(y): y E 

U {A." a < A}). However ,  since each Ao has type _-> K "-1 .  K~, it follows that 

U {A~ : a < A} has type _-> r " and hence by inductive hypothesis  the order 

type of {g.- l (y) :  y E t_){A~: a <A}} is at least A". 

Case 2. X is cofinal in "K. For  each a < A, let B~ = 

X t h { ( / 3 1 , / 3 2 , ' " , / 3 , ) : r ~ = < / 3 1 < r ~ + , , / 3 2 , - - . , / 3 , < r } .  Then {a: B~ has type 

=> K "-1} has cardinality h. By our assumpt ion on m, {g,(x): x E B~} has type 

=>A m-I for  each B~ of type => K m-l. But then {g,(x): x E X} has type 
~ A m - ' . h  = h  m. 
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For  the next  lemma,  we need a result  ([14]) which has been called the 

Mi lner -Rado " p a r a d o x " ,  namely :  

L e t  a be an ordinal  n u m b e r  and let r be a cardinal  such  that  r <- a < r +. 

Then there are sets  A ,  [or  each n < co such  that  a = t3 {A ,  : n < to} and each A ,  

has  order  t ype  less than r ~. 

LEMMA 6.3. Le t  r be a cardinal  such  that  c f r  > to, and let r "  <= a < r+. 

Then there is [~ : a --~ r ~ such  that  f o r  every A C a and every n < to, i[ A has 

order  type  r "  then {[~(/3):/3 E A} has order type >= r".  Therefore  i[ A C_ t~ has  

order  t ype  K" then so does  {[o(/3):/3 ~ A}. In par t icular ,  a ~ K ~. 

PROOF. By the Milner-Rado " p a r a d o x " ,  we may write a = t_J {A,:  n < to} 

where  the A,  are disjoint  and of  o rder  type  less than K ~. There fo re  there is a 

func t ion  f,  : a ~ r '~ such that 

(4) for  each n, [ ~ I A .  is one- to -one  and order -preserv ing ,  and 

(5) if m < n ,  y E A , ,  and 6 C A , ,  then [ , ( y ) < [ , ( 8 ) .  

N o w  suppose  A _C a has order  type  K". If  {[~(/3):/3 E A} has order  type  < r" ,  

then c lear ly  A ~ A ,  has o rder  type  < r "  fo r  each m, and hence  by L e m m a  6.1 

A has type  < K", a contradic t ion.  

N o w  we prove  T h e o r e m  5. A s s u m e  K is a cardinal,  cfK > to, K" < a < x +, a 

is i ndecomposab le  and c f a  = h. We want  to show a ~ K" �9 h. If  a = r "  �9 A this 

is trivial; a s sume a > K" - A. 

Since a is i ndecomposab le  there is an increasing sequence  (sco : /3  < A) such 

that  sr = 0, sco.~ --- so0 + K" for  all /3, sco = sup {/5~: 3, </3} w h e n e v e r / 3  is a limit 

ordinal,  and sup {sco:/3 < A} = t~. Let  Zo = {~r sco =< s r < sc0+~} for  each /3  < a. By 

L e m m a  6.3 there is a func t ion  go: Zo ~ ~ such that every  subset  of  Zo of  

o rder  type  K" has an image of  order  type  _-> K ". 

Not ice  that the set A x K' ,  o rdered  iexicographical ly ,  has order  type  K" �9 A. 

Define g :  a --, h • r ~ by letting g(~:) = (/3, go(so)) if s r E Zo. N o w  let Z C a have 

order  type  a. We claim {g(sr ~ E Z} has order  type  r ~ �9 A. Let  B = {/3 : Z A Z~ 

has order  type  >- r ' } .  If  I B I = A we will clearly be done.  If  I B I < A then there 

is some  3' < A so that B _C y. But  then Z must  have  o rder  type  _-< ~ + r "  �9 A, 

and since a is i ndecomposab le  this means  a = K '~ �9 A, con t ra ry  to our  assump-  

tion. 

All that  remains  is the second  asser t ion  of  Theo rem 5. Assume  now that  

c f r = / z < ~ .  It will suffice to show r ~ . A ~ / z  ' ~ . A . I f  p . < A  t h e n / ~ ' . A  = A  
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and the assertion is obvious .  A s s u m e  #. _-> A. Let .f: K ~ ~ / z "  be as in L e m m a  

6.2. Define g: A x K ~ ~ A  x / z "  by g (~ ,  y ) =  (/3,.f(y)). It is straightforward to 

check  that g works.  
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