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PARTITION RELATIONS FOR
UNCOUNTABLE ORDINALS

BY
JAMES E. BAUMGARTNER'

ABSTRACT

Partition relations of the form a — (a, m)?, where a is an ordinal and m is a
positive integer, are considered. Let « be a cardinal. The following are proved:
If x is singular and 2* = k™ then (k*)*A((x*)%3)%. If x is a strong limit
cardinal, then x*—(x%m)* iff ((cfx)*— ((cfx)’,m)>. If « is regular and
xk*— (x?,3), then the x-Souslin hypothesis holds. If k* <« < k* and cfa =
cfx > w, then a4 (a,3)%

1. Preliminaries

Our set-theoretic usage is fairly standard. Each ordinal is identified with the
set of its predecessors. Since the axiom of choice is assumed throughout,
cardinals are identified with initial ordinals. We use w, to denote the initial
ordinal occupying position « in the sequence of all initial ordinals; of course
wo = w. If k is a cardinal then « * is the next largest cardinal. The abbreviations
ZFC, GCH and V = L stand for Zermelo-Frankel set theory with the axiom of
choice, the generalized continuum hypothesis, and Godel’s axiom of construc-
tibility, respectively.

All exponentiation in this paper is to be interpreted as ordinal exponentia-
tion.

If X is a set then | X| is the cardinality of X and [X]" is the set of all
n-element subsets of X. If f is a function whose domain includes X, then f| X
denotes the restriction of f to X.

If a is an ordinal then cfa denotes the least ordinal 8 which can be mapped
onto a cofinal subset of a. The ordinal « is said to be indecomposable iff «
cannot be represented as a sum B + y where B,y < a. It is well-known (see
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[14]) that if « is indecomposable and & = B U C, then either B or C has order
type a. The indecomposable ordinals are precisely the ordinals of the form «?
for some ordinal B.

Let « be a regular uncountable cardinal. A set C C « is said to be closed
unbounded (in «) provided that C is cofinal in « and for every a <k,
sup(C Na) € C. It is well known that if C, is closed unbounded for every
a <k, then so is {B <«k:forall a <B, BEC.}

A partial ordering (T, = r)is a tree provided thatforalls € T,{t € T: t < 15}
is well-ordered by = The level of s, written [(s), is the order type of
{t € T: t <;s}. Let « be aregular cardinal. A tree (T, = 1) is a k-Souslin tree if
it satisfies the following conditions:

M |T|=x

(2) if s €T and [(s) = a then there are ¢,,t.€ T such that ¢, # t, I(t) =
l(tz) =a+1 and s < Tt|,t2

(3) if sET then |{t €T: s <t}| =«
(4) if A C T is a set of pairwise incomparable elements, then |A | < «.
A set B C T is called a branch if B is totally ordered by < r. Using conditions

(2) and (4), it is easy to see that a x-Souslin tree can have no branches of power
k. The «-Souslin hypothesis is the assertion that there are no «-Souslin trees.

Suppose a, Bo, B1," * *, Bn-1 are ordinals and n < w. The partition symbol
a —>(Bo, Bl, cr ,Bm—l)"
means that for any f: [a]" —{0,1,---, m — 1} there exist i <m and X C « such

that X has order type B; and f(x)=i for all x €[X]" Alternately,
a->(Bo, -, Bm-1)" holds iff whenever [a]" = P,U --- U P,._, then there are
i<m and X Ca such that X has type B; and [X]" C P. The negation of
a—(Bo,*, Bm-1)" is written a #5 (Bo, -, Bm-1)".

Let a and B be ordinals. We say that a can be pinned to B, written a — B, iff
there is f: a« — B such that for any set X C a, if X has order type « then
{f(¢): ¢ € X} has order type 8.

There is an important relation between pinning and partition relations, given
by the following:

ProrosiTioN 1.1 Suppose a and B are ordinals and m < w. If « > 8 and

B A (B, m), then a /5 (a,m)’.
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Proor. Let f: a — B be a pinning map. Suppose [8) = P,U P, and P,, P,
are a counterexample to 8 = (B, m)’. Let Q, = {{£& n}: £ 1 < a, f(£) # f(n) and
{f(&),f(n)€ P}. Let Qo=[a]*— Q.. Then Q,, Q, are a counterexample to
a—(a,m).

REMARK. Obviously a more general theorem than Proposition 1.1 is true.
However, in the rest of this paper we never need more than Proposition 1.1.

2. Statement of results

We shall be concerned with the classification of ordinals a which satisfy
a — (a,3)’. We treat particularly the case a = k?, where « is a cardinal.

It is easy to see that if @ — (e, 3)’ then @ must be indecomposable. If a is an
infinite cardinal then it is well known that a — (a, @)’. See [5]. Specker ([15])
proved w’— (w? m) forall m < w,and 0" 4 (0",3)* for 3= n < w. Chang ([1))
proved v — (®*“,3)* and Milner improved his result to w* — (0*, m)? for all
m < w. A much shorter proof of the latter result was found subsequently by
Larson ([12]). Galvin and Larson (see [6]) have shown that if v* = a < w, and
a—(a,3)’, then a=o0"" for some B. It is still unsettled whether
0> (0", 3)%

For uncountable ordinals, less is known. Hajnal proved:
(1) if 2* =« then k™ -k A (k" - «,3)
(2) if 2° = «* and « is regular, then (x*)*— ((«*)?,3)%
The proof of (1) is in [2]; (2) is proved in [8]. In Section 3 we show how to
extend Hajnal’s method to prove (2) in case « is singular. We obtain
THEOREM 1. If 2" =k* then (k*)* ((x*)%,3)%.

Section 4 is devoted to a proof of the following:

THEOREM 2. Assume that k is a strong limit cardinal and m < w. Then
Kk:> (k2 m) iff (cfx)*— ((cfx)’, m)

If GCH is assumed, then Theorems 1 and 2 reduce the problem of
determining when «?— (k?,3)* to the case for inaccessible cardinals.
Further information is given by the following, which is proved in section 5.

THEOREM 3. Assume « is regular and x*— (x> 3)’. Then the x-Souslin
hypothesis holds.
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A cardinal « is called weakly compact if x = (k, x)*. It is known that if « is
weakly compact then x> (k?, m)* for all m < w. See [7], for example.

In view of Jensen’s result ([9]) that if V = L then « is weakly compact iff the
x-Souslin hypothesis holds, we have

CoroLLARY 4. If V=L and « is a cardinal, then k*— (x* 3) iff cfx is
weakly compact.

Other results in the same direction are the following: If x is weakly compact,
a<k and a—>(a,m)’ then k- a—(x-a,m)* (due to the author) and
k* a—(x* a,m)’ (due to Larson). See [11]. Also, if x is a Ramsey cardinal
then x* —>(x“,m) and k“ - w = (x* - w,m)* for all m < w. This is proved by
Larson in [10].

Little else is known, even assuming GCH. For example, it is not known
whether GCH (or even V = L) settles w, - w — (w, - w,3)*. This is Problem 13 in
[3].

If GCH is not assumed, then the only substitute we have at present for (1)
and Theorem 1 is a result of Larson ([10]), which states that if « is uncountable
and regular then «“*' 4 («**',3)%.

In Section 6 we prove

THEOREM 5. Assume « is a cardinal such that cfx > w. Let a be an
indecomposable ordinal such that k* <a < k" and cfa = A. Then « = «* - A.
If cfx = p, then a = u” - A also.

By Proposition 1.1, Theorem 5 together with Larson’s result (and the
observation that a + (a,3)’ if a is decomposable) yields

THEOREM 6. Assume k is a cardinal and k* < a <k*. If cfa =cfk > w,
then a # (a,3)*.

This leaves open many interesting questions. For instance, are the following
propositions consistent with ZFC:

(a) w0 — (0 0,3)°
(b) wi—(01,3)°
(c) 0t > (0,37 ?

In view of Theorems 1 and 3, it seems possible that Martin’s Axiom ([13]) may
provide an approach to (b).
Sections 3-6 may be read independently of one another.
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3. Proof of Theorem 1

In view of Hajnal’s result, we may assume « is singular.

Let A ={(n,£): n <&<«k'}. Let <, be the lexicographical ordering of A
and let <, be the backwards lexicographical ordering of A (i.e. the ordering by
second element first). Then the order type of (A, <)) is (x*)* and the type of
(A, <)) is «™.

If XCA and a <«k*, then a is a double limit point of X iff {n<
a:{§ <a:(n, &) € X}is cofinal in a}is cofinalina. Let D={X CA: | X| =«
and {cfa: a is a double limit point of X} is cofinal in «}. Since | D | =2 and
2" =«k", we may assume D ={D,: a <«k*}.

Now, by induction on <., for each (n,£) E A we define a set A(n,£)C A
with the following properties:

M if (0", §)EA(n,§), then n <y’ <& <¢

2) if x,y EA(9,£), then x€ A(y) and y& A(x)

3) A(n, ) is a function

@) if a <& and D, C{(n',&'): n <n'< ¢ <¢}, then D, N A(n, &) #0.

Let x =(7n,£€) and suppose A(y) has been defined for all y <,x. Let
E={D,:a<¢and D.C{(n',¢): n <n' < ¢ <¢}},and suppose | E | = A. Let
(Eg: B < A)be an enumeration of E. We will put A (x) ={x;: 8 < A}, where the
Xg € E; are defined by induction as follows. Let x, = (n,,£,) forall y < 8. Let a
be a double limit point of E; such that cfa > |B|. This is possible since
|B| <A =«. Since cfa >| 8|, there exists ns < a satisfying

(5) {¢ <a:(ns ¢')E Es} is cofinal in «

(6) for all y <, either a <m, or &, <7mp or n, <M <a <§,.
Also, since cfa > | B, there exists & < a such that

(7) (ns, &) E Ep

(8) for all y <, if n, <mp <a <§, then (5, &) E A1, &)

Of course, in order to make (8) true, we must use the inductive hypothesis (3)
for each (1,,£,), ¥ < B. Finally, let x, = (7, &). It is easy to check that (1)—(4)
hold for A(xg).

Let Po={{x,y}E[A]* x € A(y)}. It is clear from (1) and (2) that if B is a
three-element subset of A then [B]*Z P,. Now suppose X C A has order type
(x*)* with respect to <,. We will show that [X]*N P, #0.
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Lemma 3.1. If X C A has order type (x*)?, then the set of double limit points
of X contains a set which is closed and unbounded in «”.

Proor. Let X' ={n:{£: (n,£)€ X} is cofinal in k*}. Then X' is cofinal in
k', so Y’, the set of limit points of X', is closed and unbounded in «*.
Similarly, if for each n € X' we let X, = {£: (5, £) € X}, then Y,, the set of
limit points of X, is closed and unbounded in «*. Then Z = Y' N{a: for all
n<a, a €Y,}is closed and unbounded. Moreover every element of Z is a
double limit point of X, so the lemma is proved.

Now choose 7 such that |{¢: (n,£) € X}| = «*. By the lemma there is a
closed unbounded set C consisting of double limit points of {(n’,¢'):p <7n’
and (n',£’) € X}. Hence there exists some 8 < «* such that {cfa:a € C N B}
is cofinal in x. Let Y ={(n',£)E X: n <7’ and ¢ < B}. Then Y €D, Say
Y = D,. Let £ > a be such that (, £) € X. Then by (4) we have A(n,é)N D,
# 0. It follows immediately that [X]> N P, #0, and the proof is complete.

4. Proof of Theorem 2

The theorem is a tautology if « is regular, so we assume « is singular. We
give the proof for m = 3; the rest is left to the reader.

Let A =cfk, and let (x.: « <A) be an increasing sequence of regular
cardinals such that 2,.,«, = k.

Let A ={(a,B): @, <«} and let B ={(a, B): a, B < A}. Under the lexico-
graphical ordering, A has order type «* and B has type A2

First we prove that «*—(«?,3)* implies A*—(A%,3)*. Let {S,:a <A} be a
collection of disjoint sets such that

M) 18| =k
2) U{S.:a<A}l=«
B)if a<B, £ES, and n € S,, then £ <n.

Now suppose f:[B]*—>2 is a counterexample to A*— (A2 3)%. Define
g:[AF>2asfollows: If £ ES., n €S, €' ES., 3’ € S and (e, B) # (a’, B),
then let g({(&n).(¢', 7)) =f({(a,B),(a’,B')}); otherwise let g({(£m),
(¢',m)P=1. It is easy to see that g is a counterexample to xk*— (x?2,3)~

Now we prove that A*— (A% 3)’ implies x’— (k% 3)*. Let f: [A)—2, and
assume that there is no three-element set X C A such that f(x)=1 for all
x €E[X). Letg: [k]*>8besuchthatif a<B<y<d<kanda'<B'<y'<
8’ <k, then
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g({a, B, v, 8 =g({a', B, v, 8"
(e, B), (v, 8D = f(a’, B"), (', 8",
fd(a, v),(B,8)}) = f{(a’, ¥),(B",6"})  and
f({(a, 8),(B, V)) = f({(a’, 8"),(B", ¥}

LeEmMA 4.1. There is a collection {S.: a <A} which satisfies (1) and (3),
and in addition for any a; < a; < as; < as<A, if x;, x| C S, and | x;| = | x}| for
i=1,23,4,and if |U{xi: 1=i=4}| =4, then

iff

gx;Ux,Ux;Uxy)=g(xiUxiUxiUx)).

Proor. This is an immediate consequence of the Canonization Lemma of
Erdds, Hajnal and Rado (Lemma 3 on p. 110 of [4]). The proof in [4] uses the
GCH, but for strong limit cardinals that assumption is unnecessary.

Let Z., @ <A, be such that

@) for all £€ Z,, af<§<)\
(5) if a# B then Z, N Z, =0.
6) |Z.| = A

Let W={(a,B), a€Z, and B E€ Z,}. Then W, with the lexicographical
ordering, has type A”. Furthermore W has the convenient property that if (a, 8)
and (a’, B’) are distinct members of W, then either « = «’ and o, 8 and B8’ are
distinct or else a, o', B, B’ are all distinct.

Now define h: [W]*—>2 as follows. Let (a, 8) <(a’, ') lexicographically.
Then h({(a, B),(a’, B = f((&n),(¢',n")})), where ¢ <¢', (€S, ¢ ES.,
n € S5 and ' € Sg.. By Lemma 4.1, the definition of h is independent of the
choice of & ¢', n and 7n'.

Suppose X is a three-element subset of W and h(x) = 1 for all x € [W]*. Say
X ={(a;, B:): i <3} and (e, Bo) < (a1, B:) < (a3, 8,). Then choose &, 7, i <3, so
that <& <¢ and &€E€ES., M ESs i<3. Then f(x)=1 for all
x €[{(& n:): i <3})°, contradicting our assumption concerning f Since
A?—(A%,3)%, we conclude that there exists a set X C W of order type A? such
that h(x) =0 for all x € [ X].

Let Y ={a: |{8: (a,B) € X}| =A}. Fora € Y, let X, = {B: (a, B) € X}. Fix
a€Y and define ko {X.]P>2 by k.({B,vh=
(F(&r, m), (€2, mD), FU(EL, 1), (€2, m9D),  where B <y, £,6,¢),£:€S,
N, M2E S N, NES,, & <& and &)< 5.
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LemMma 4.2. There is X, C X, such that | X,| = A and k,(x) = (0,0) for all
x E[XL

Proor. Since A = (A, w, w, w)* (see [5], theor. 44), we know that if Lemma
4.2 is false then there exist m, n and X,C X, such that X’ is infinite,
k.(x)=(m,n) for all x € [X]%, and either m =1 or n = 1. Suppose m = 1; the
proof for n = 1 is similar. Let B, < B8, < B, be the first three members of X" Let
£<&<é be members of S. and let % €S, i<3. Then clearly
f{(& i), (& m;)}) = 1 whenever i <j <3, contradicting our assumption con-
cerning f. Hence Lemma 4.2 is true.

For « € Y and £ € S,, define U, C U{Ss: B € X} so that

N U:NU=0if §£E'ES, and E# ¢
®) U | =«

Let T = U,ey U¢es, {(£m): 1 € U,}. Since k — (k,3)’, we may assume that
f(x) =0 whenever ¢ is fixed and x € [{(§¢, 11): 7 € U,})>. We assert that f(x) =0
for all x €[TJ". Since T has type «?, this will complete the proof.

Let x ={(&1),(¢',n" )} E[T). Let ¢E S, £ € S, € Sp, ' € Sp.. We may
assume ¢ <¢'.

Case 1. a#a'. Then a, a', B, B’ are distinct and f(x)=
h({(a, B),(a’,B)}) =0 since X is homogeneous for h.

Case 2. a=ca' and B# B’. Then we are done by Lemma 4.2 and the
definition of X..

Case 3. a=a'and B =pB'. Assume f(x)= 1. Let & < ¢, < &, be members
of S, and let o< 1, < 7, be members of Sg. If n <’ then, by Lemma 4.1 and
the definition of g, f(y) = 1for all y € [{(&, no), (&1, M), (&2, n2)}]°, while if ' <
then f(y) =1 for all y € [{(&, 72), (&1, m1), (&, no)})°. In either case our assump-
tion concerning f is contradicted. Hence f(x) = 0.

5. Proof of Theorem 3

We will show that if « is regular and a «-Souslin tree exists, then
k2> (k% 3)%

Suppose (T, < 1) is a k-Souslin tree. Since | T| = x, we may assume T = k.
Let X ={(a, B): @ < 1B}. Let X be ordered lexicographically with respect to
the usual ordering on «, i.e., let (o, 8)<(y,8) iff a <y or a =y and B <.
Then X has order-type «>.
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Next we define sets P, P, so that [X])* = P, U P,. Let P, be the set of all pairs
{(a, B),(a’, B} E[X] such that a < ra’ < 18 and forall y, if a’ < 7y = 18 then
vyZ 8. Let P,=[X)-P,.

It is clear that there is no three-element set Z C X with [Z]* C P,. It remains
to show that if Y C X and Y has order-type «?, then [Y)*'N P, #0.

Let A¢={a:|[{B:(a,B)EY}| =x}. Then J|A =« Let T,=
{a: B € Aja = 1B} and let Bo={a: a& T, but for all B < ra, B € T,}. Then
B, is an antichain in(T, <), so | Bo| < x. Choose a, € A, so that [(a,) > 1(B)
for all 8 € B,. Then it must be true that for all 8 > ra, there is y € A, such that

=1v.

Now let A, ={B:(ao,B)E Y}, let T\={a:IBE A a =8} and let B, =
{a: «a& T, but for all B <ra,B € T\}. Then B, is an antichain so | B,| <«.
Choose ao € T, so that I(ag) > I(B) for every B € B,. As before, forall 8 > a4
there is y € A, such that g = 1v.

Now let a, € A, be such that ao = ra,, and let B, be such that (a,, 8,) E Y.
Since a; has at least two immediate successors in T, there is an immediate
successor a; of a, which is incomparable with B8,. Let 8,E€ A, be such that
ai = 1Bo. Then {(ao, Bo), (a\, B1)} € P,, as desired. Hence k2>+ (k2 3)%.

6. Proof of Theorem 5

Throughout this section, if « is a cardinal and n < then let "k =
{{ar, -+, an): @y, -+, an < k}. When "k is ordered lexicographically it has order
type «". Note that '« ={(a): a < x}.

LemMa 6.1. Let « be an infinite cardinal and let 1 = n < w. Then no set of
order type k" may be decomposed into fewer than cfx sets of smaller type.

Proor. It will suffice to show that if A <cfk, X, C "k for each @ <A and
each X, has type <«" then U{X,:a <A}#"k.

By induction on n we define the notion of a large subset of "«k. We say X C '«
is large iff |k —{a:(a@)EX}| <k If XC""'k then X is large iff
| ={ar: {(az, -+, ansi): (@1, @2, -+, @ar) € X} is a large subset of "x}| < k. It
is easy to check the following by induction on n:

(@) If u <cfx then the intersection of u large subsets of "« is large
(b) If X C"k and X has order type < k" then "k — X is large.

Lemma 6.1 is an immediate consequence of (a) and (b).
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LEMMA 6.2. Suppose « is a singular cardinal and cfx = A >w. Then
k“—=A“. In fact, there is a function f: k* — A“ such that for all n < w, if
X C«k* is of order type k" then {f(a): a € X} has order type = A"

Proor. It will suffice to show that for each n < there is a function
fa: k" — A" such that for all m = n and all X C «", if X has order type «™ then
{fas(@): @ € X} has order type =A™ The function f is then obtained by
patching together copies of the functions f, in the following manner: «“ may be
written as the disjoint union of sets C,, n < w, such that each C, has order type
k" Let f.: C,—> A" be acopy of f, and let f= U, fr If C C «“ has order
type «" then by Lemma 6.1 there is some p so that C N C, has order type k",
and since {f,(a): «a € C N C,} has order type = «" we are done.

Let (k.: @ < A) be an increasing sequence of cardinals such that sup{k.: a <
A} = k. Define h: k — A by h(a) = B iff B is the least ordinal such that & < k.
Define g.: "« = "A by gn(ay, -, a.) =(h(ay), , h(a,)). We will prove by
induction on n that for all m =n and all X C"«, if X has type «™ then
{g:(x): x € X} has type =A™, and this will prove the lemma.

For n =1 this is clear. Assume n > 1.

If m =1 then again the assertion is clear. Suppose m > 1 and for all smaller
values of m the assertion is true. Let X C "« have order type k™.

Case 1. X is bounded in "k. Then it is not difficult to see that there are
sequences (£,: a <A) and (A,: a < A) such that

(1) A, C" 'k for all «
(2) A. has order type Z k™' -k,
3) {(§a7 ,BZ’ Y Bn): (329 T Bn) € Aa} C X for all a.

(Note: we do not require the ¢ and A, to be distinct.) Moreover, we may
assume h(&) = h(&) for all @« <B < A. It follows that the order type of
{g-(x): x EX} is at least as large as the order type of {g...(y):y€E
U{A.: a <A}). However, since each A, has type = k™' k., it follows that
U{A.: @ <A} has type =«™ and hence by inductive hypothesis the order
type of {g"7'(y): y € U{A.: a <A}} is at least A ™.

Case 2. X is cofinal in " For each a<AiA, let B, =
XN{(B1,B2*, Bn): Ka = B1<Kas1, B2, Bn <k}. Then {a: B, has type
= «k™'} has cardinality A. By our assumption on m, {g.(x): x € B,} has type
=A™ for each B, of type Z«™'. But then {g.(x): x € X} has type
ZA"T A=A
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For the next lemma, we need a result ([14]) which has been called the
Milner-Rado *‘paradox”, namely:

Let a be an ordinal number and let x be a cardinal such that k = a <k".
Then there are sets A, for each n < w such that a = U{A,: n < w} and each A,
has order type less than «°.

LEMMA 6.3. Let x be a cardinal such that cfx > o, and let x“ = a < «".
Then there is f.: a — k* such that for every A C a and every n < w, if A has
order type k" then {f.(B): B € A} has order type = k". Therefore if A C a has
order type k* then so does {f.(B): B € A}. In particular, a — x*.

Proor. By the Milner-Rado “‘paradox”, we may write a = U{A.: n < w}
where the A, are disjoint and of order type less than x“. Therefore there is a
function f,: a — k“ such that

(4) for each n, f, | A. is one-to-one and order-preserving, and

(5) if m<n, yE€EA. and § € A, then f,(y) < f.(8).

Now suppose A C « has order type «". If {f.(8): B € A} has order type < «",
then clearly A Nt A, has order type < " for each m, and hence by Lemma 6.1
A has type < k", a contradiction.

Now we prove Theorem 5. Assume « is a cardinal, cfk > w, k* < a <«k*, «
is indecomposable and cfa = A. We want to show a >« - A. If a = k* - A this
is trivial; assume a > k* - A,

Since « is indecomposable there is an increasing sequence (£;: 8 < A) such
that =0, &.. = & + «“ for all B, & =sup{¢,: v < B} whenever B8 is a limit
ordinal, and sup{&: B <A}=a. Let Z, ={¢: & = £ < &.,} for each B8 < A. By
Lemma 6.3 there is a function gs: Z; — «“ such that every subset of Z, of
order type x“ has an image of order type = k*.

Notice that the set A X «“, ordered lexicographically, has order type «* - A.
Define g: @ — A X «* by letting g(&) = (B, gs(£)) if ¢ € Z;. Now let Z C a have
order type a. We claim {g(£): £ € Z} has order type x“ -A. Let B={B8: Z N Z;
has order type =z k“}. If | B| = A we will clearly be done. If | B| < A then there
is some y < A so that B C y. But then Z must have order type < £, +k* - A,
and since a is indecomposable this means a@ = «* - A, contrary to our assump-
tion.

All that remains is the second assertion of Theorem 5. Assume now that
cf = p <«. It will suffice to show x“ A — u® A If £ <A then u“-A =A
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and the assertion is obvious. Assume u Z A. Let f: «“ — u“ be as in Lemma

6.2. Define g: A X k“—= A X u® by g(B,v) = (B, f(y)). It is straightforward to
check that g works.
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